

A new approach to virtual design for spatial configuration problems

Carlos Calderon and Marc Cavazza
University of Teesside, TS1 3BA Middlesbrough, United Kingdom

c.p.calderon@tees.ac.uk,
Daniel Diaz

University of Paris 1, 90 rue de Tolbiac, CRI bureau C1405, Paris, 75013, France.

Abstract

 In this paper, we present a new framework for the use
of Virtual Reality (VR) in engineering design for
configuration applications. Traditional VR systems
support the visual exploration of a design solution but do
not assist the user in exploring alternative solutions
based on domain knowledge. Extending previous work in
the area of Intelligent Virtual Environment, we propose
an intelligent configuration system based on constraint
logic programming (CLP), integrated in a real-time 3D
graphic environment. This type of integration facilitates
the expression of design knowledge in the VE and
enables the user to interactively solve and/or refine a
spatial configuration problem. In the system described in
this paper, the user can visually explore configurations,
but his interaction with objects of the configuration
problem triggers new cycles of constraint propagation
from the modified configuration to produce a new
compatible solution.

1. Introduction

Spatial configuration problems are visual by nature
and they are based on an implicit mapping between the
“abstract problem space” (which is searched for solution
configurations) and the physical environment in which
these configurations are deployed. It is, however,
difficult to make this implicit mapping transparent to the
user. VR techniques have the potential to solve this
problem but, in the current use of VR for engineering
design, the knowledge is mainly expressed on the
geometrical layout, textures, colours, etc. As a result of
this, VR assistance in the use of the underlying design
knowledge is restricted. To put it differently, it is
currently not feasible to attach much design knowledge
to the Virtual Environment (VE); consequently, users
cannot use the “natural” interaction mechanisms of VR
to interact with it and visualise the “dynamic”
consequences of their interactions with the configuration.

In this paper, we present a framework for
configuration applications that, while preserving the
natural interaction of traditional Virtual Reality systems,

support the expression of design knowledge in the VE
and the visualisation of the user’s interactions with the
configuration. In the context of configuration
applications this translates into the user being able to
navigate and physically interact with 3D objects, but this
interaction triggers the automatic reconfiguration of the
configuration problem, thus allowing, the dynamic
exploration of design solutions.

We claim that this can be achieved by integrating
Constraint Logic Programming (CLP) techniques into
Virtual Environments, extending previous work in
Intelligent Virtual Environments [1] [2]. Consequently
and in order to demonstrate the viability of our approach,
we have implemented an intelligent configuration system
in which solutions can be interactively refined by the
user through direct manipulation of objects in the virtual
environment.

In the next sections, after reviewing related work,
we describe the system’s overview, software architecture
and the proposed interaction model. We then discuss the
formalisation of design knowledge in CLP, its
expression in the VE and the interactive exploration of
solutions. We conclude by discussing the potential for
further applications and generalisation of the approach.

2. Related Work and Background

In the field of virtual design, previous work has
described the inclusion of a knowledge level for design
applications [3]. In these systems, a Decision Support
Systems was added to the virtual environment to validate
the design configurations. However, this type of system
validates configurations, more as a diagnostic system,
rather than enabling the user the visualisation of his
interactions with the configuration by, i.e, reconfiguring
the configuration. In addition, standard decision support
systems, such as rule-based systems, lack flexibility in
their inference mechanisms, which prevents their use in a
fully interactive system.

Fernando et al. [4][5] have emphasised the
importance of constraints in virtual design. However,
they have been essentially dealing with graph-based
techniques which do not support the interactive
generation of alternative design solutions. In other
words, graph-based techniques help to interactively find

a solution by restricting the solution space but they are
limited in terms of the generation of design alternatives
once a solution has been found.

The use of constraint programming for the
expression of construction knowledge was pioneered by
the SEED (Software Environment for Support the Early
Phases in Building Design) project at CMU [6]. The
SEED project introduced the conceptual basis for the
representation of constraints to automatically generate
layouts and argued that constraint programming provides
a uniform mechanism to handle the domain related
knowledge, because spatial configurations could be
naturally expressed as constraints. Moreover, constraints
have proven to be a useful format to express engineering
design knowledge [7]. For instance, much engineering
knowledge is stated in terms of constraints: regulations,
codes of practice, behaviour models, cost restrictions,
and planning strategies all employ explicit declaration of
constraints which are easily translated into the “formal”
constraints expression of constraint programming.
Hence, constraint-based systems have the potential to be
one of the most understandable and easiest to maintain of
all reasoning systems.

Furthermore, previous research in the area of
Intelligent Virtual Environments has proposed the use of
constraint logic programming as a supporting
mechanism for intelligent object behaviour, its rationale
being the seamless integration of symbolic reasoning
techniques with the visual and interaction components:
Axling et al. [1] and Codognet [8]. Both Axling and
Codognet have put emphasis on the behaviour of
individual objects in the virtual world. However, CLP
naturally provides solutions for the combined behaviours
for sets of objects, which is the property we use to
implement behaviours for the virtual environment as a
whole.

3. System Overview and Architecture

The system is an interactive 3D environment in

which the user can freely navigate and interact with the
world objects (e.g. by dragging and dropping them). That
is, the system initially proposes a first solution (in the
form of a configuration of objects) which serves as a
starting point for user’s exploration of possible
configurations. Once the user has explored this
configuration, he can interact with it by displacing the
constituent objects. The correct allocation of an object
instantly triggers new solutions (configurations) from the
solver which, in turn, are displayed in the virtual
environment.

The system has been developed using the Unreal
TournamentTM (UT) game engine as a development
environment. In addition to being an efficient graphics
engine, it includes a development environment in which
object behaviours and interactions with objects can be
development environments, even for immersive systems
[9][10]. The UT environment also supports the overall
software architecture by allowing integration of external
modules via dynamic link libraries or windows sockets.
We have used TCP sockets as a a communication
mechanism between the visualisation engine and the
intelligent configuration system (see Figure 1).

The intelligent configuration module is based on
Constraint Logic Programming (CLP). More
specifically, the CLP(FD) framework provides all the
tools to represent design knowledge, mapping design
constraints to “formal” constraints in CLP which express
e.g. distance between objects, compatibility between
materials, etc. In addition, it enables incremental
solutions to be computed in user real-time, which
ensures the interactivity of the system as a whole. We
have used GNU Prolog [11] as a programming
environment, which contains an efficient constraint
solver over Finite Domains (FD). This allows the
implementation of many different types of constraints
which can be represented over a finite domain, i.e. an
ordered list of properties. This makes possible to
represent “semantic” constraints, i.e. constraints
involving object properties such as materials, friction

Figure 1. System Architecture: a GNU Prolog solver is integrated in the Unreal Engine

coefficient, resistance to fire, etc. In the next section, we
give a more detailed insight into the implementation
considering the specific techniques used.

It must be noted that, according to our results, the
communication time for the overall cycle is on average
less than 15ms, which is fully compatible with the user
interaction (as the user is not navigating when interacting
with objects).

4. An Intelligent Configuration System

An intelligent configuration system is used as an

application example. The data used in this configuration
scenario is derived from a simple yet realistic example
which uses real-world design knowledge in terms of
building interior design for offices (a bank agency in our
case). More specifically, the data used for both objects
and constraints was drawn from real specifications
[12][13].

In our intelligent configuration system, the spatial
relationships between the objects in a layout
configuration are all known and the constraints whose
formulation depends on these relations reflect those
specific spatial relations. Moreover, the objects involved
in the configuration have been divided into non-movable
objects (e.g. ventilation ducts, sources of heat, etc) and
movable objects (e.g furniture: sofas, desks, etc). This is
a purely semantic distinction which can be easily
reversed. In our case, this means that whilst all objects
take part in constraints specifying the design
requirements, the user will only interact with the
movable objects: the furniture. Consequently, when the
user decides to reallocate a movable object, this, in turn,
disrupts the imposed constraints in the configuration and
forces the system to re-allocate the remaining movable
objects to generate a solution compatible with all the
design requirements

In our case, the movable objects are: one vending
machine, two desks (which represent the customer

attention area), two sofas (waiting attention area), two
automatic teller machines (ATMs), three fire
extinguishers and four bins. This constitutes a subset of
14 objects: considering the size of the environment and
that the overall size of the available set of constraints for
each object is eleven, the corresponding search space
(abstract problem space) is substantial and indeed
impossible to search systematically, even less so in real-
time.

4.1 Formalisation of design knowledge in CLP

In order to acquire and encapsulate the design
knowledge into the appropriate formalism: CLP, the
characterisation of building design requirements
proposed by the SEED project has been adopted [6]. This
characterisation proposes two intertwined levels for the
formulation of design requirements: design unit and
functional unit level.

For our purpose, the encapsulation of design
requirements was adopted at functional unit level:
movable and non-movable objects (see Figure 3). The
constraints or design requirements on those objects
(functional units) have been classified in three groups:
topological, local and global constraints. These
constraints incorporate geometric as well as more
“semantic” attributes such as lighting and temperature.
Consequently, to assess a proposed design of a design
unit (e.g the furniture layout of a room), the designers
select and input the attribute values on the functional
units (objects) and their “performance” is interactively
evaluated by the user through the virtual environment.

The topological constraints are inherited from the
3D environment and are transformed into Prolog facts
which describe room’s topological characteristics.
Consequently, from the user’s perspective, there is a
perfect matching between the topological characteristics
of the 3D environment and the Prolog facts implemented
in the solver. For instance, sources of heat or radiators
and different lighting levels are visually apparent to the

Figure 3. CLP formalisms enable the transformation of design knowledge into a set
of constraints.

user in the 3D environment. Therefore, both
characteristics have been formalised as Prolog facts as
follows:

These facts define the coordinates of the sources of

heat (a list of points X/Y in the search space) and the
regions where the lighting level is less than 300 lux (a
list whose each element defines a lighting value and an
associated rectangle in the search space).

In the example, there are also definitions for the
location in the 3D environment of the following
elements: power points, ventilation ducts, the central
fountain, queuing area, counters, walls, luminosity and
temperature levels.

Local constraints are constraints on the attributes of
a single object and specify how the object relates to the
topological characteristics of the virtual environment.
For instance, let us imagine that the user wanted to
reallocate the desk object. The new object location
would be constrained by the object’s attributes (or design
requirements) expressed in the corresponding Prolog
clause:

This clause reads as follows: a desk should be

placed at a minimum distance of, for instance, 6 meters
from any furniture (e.g. the central fountain), at a
minimum distance of from any ventilation duct, at a
maximum distance of 4 from a power point, inside a
region whose luminosity is between 300 and 500 flux
and whose temperature is between 19° and 24°.

Global constraints are constraints whose

formulation involves more than one object and therefore,
are imposed on the configuration. These constraints
relate, for example, objects of each kind, objects of two
different types, all the objects and so on. Consequently
and following with the reallocation of a desk object, this
not only disrupts its local properties but also the
properties that link that object to the rest of the
configuration. For example, the following constraint:

enforces the minimum and maximum distance between 2
objects: a desk and an atm in this case. Hence, if the new
allocation is nearer than six units or further than 12 it
will force the atm to be reallocated which, in turn, will
force any other object linked to the atm to behave in the
same fashion. In this case, constraint propagation serves
as the basics for interactive problem solving, as it solves
the configuration problem created by the user by
displacing an object.

Global constraints are particularly relevant to
express design requirements which involve group of
objects. For instance, the following requirement: fire
extinguishers and bins need to be distributed in the room
to comply with health and safety regulations has been
implemented in a similar fashion.

It must be noted that there are two implementation
levels for either local or global constraints: descriptive
and primitive. In the descriptive level the user of the
system (e.g the designer) states the constraint, or what it
needs to be solved, without being concerned about how it
is resolved. Hence, constraints can be easily asserted or
retracted from the constraint solver. On the other hand,
the primitive level is concerned with the optimization of
the resolution process. That is, at a primitive level the
main concerned is to find, or define, the most appropriate
finite domains predicates which assure an efficient/fast
solver.

Figure 4 shows an example of this. In this case, the

distance_constraint(desk,atm,6,12)

object(desk
[furniture_min(6), duc_mint(3), power_max(4),
luminosity(300…500), temperature(19..24)]

source_of_heat([X0/Y0, X1/Y1/,X2/Y2])

luminosity([lightingvalue = Area0, lightingvalue
= Area1, lightingvalue = Area2])

Figure 4. Constraints implemented at descriptive and primitive level.

descriptive level is concerned, firstly with matching the
lighting levels defined in the solver, using the
topological constraint lumninosity [LAreas], to those on
the 3D environment; and secondly with defining the
acceptable levels for a particular object, in this case a
desk. At a primitive level the constraint
set_imposs_rect(LRect, 0, X, Y) ensures that an object
X/Y, in this case the desk, cannot belong to a given
rectangle A1/B1-A2/B2, defined by the 2 diagonal
coordinates, in which the lighting levels are inferior to
imposed minimum threshold or acceptable level. Thus,
this further level of description maintains, at a
descriptive level, the declarative nature of CLP as well as
assuring an efficient solver.

4.2 Interactive exploration of solutions

First running the system results in the solver
producing a set of variable allocations satisfying all the
design constraints. These variables are translated in the
virtual environment in terms of object types and
positions, which instantiates all furniture objects at their
respective locations, thus constituting a first design
solution (object configuration). Once the initial
configuration has been deployed, the user can explore
this first solution by navigating in the virtual
environment and test variants of the configuration by
changing objects’ positions.

For instance, let us image that the user wants to
refine and/or further explore the configuration (e.g an
ATM is too close to the queuing area). Consequently,
the user seizes the ATM object and proceeds to
reallocate it while h/she explores the 3D environment.
Once a suitable location has been found the user will
drop the object. In our implementation, the user’s actions
trigger the corresponding Unreal events. For instance,
when the object is dropped an unreal event is triggered
which sends the object’s location to the solver in the
appropriate query format (e.g atm=1/12.).

Consequently and continuing with the example,
when the user seizes the atm object he is disturbing both
the local and the global constraints attached to it. As
shown in Figure 5, an ATM object, can only be allocated
away from a, e.g, source of heat (heat(Dist)) and,
similarly, it needs to be away from any other object of
the configuration a specified (distance_constraint(Obj1,
Obj2, DMin, DMax). Thus, when the user decides to
reallocate the object by dragging and dropping it to a
new position, this, in turn, disrupts the imposed
constraints in the configuration and forces the system to
“propagate” all the constraints and to generate a solution
compatible with the design requirements. This
propagation and a non-deterministic search are the basic
mechanisms for interactive exploration of solutions.

Consequently, the user utilises the “natural”
interaction mechanisms of VR to interact with the
configuration problem and, the automatic reconfiguration
of the configuration problem (see Figure 6) enables him
to visualise the consequences of his interactions on the
configuration.

5. Conclusions

We have presented a novel framework for the use of

virtual environments in interactive virtual design. For
design applications, this framework supports the
expression of design knowledge in the VE and the
exploration of new design solutions by refining previous
ones, which would appear a natural process to many
users. In other words, this framework supports the
interactive exploration of the solution space of a spatial
configuration problem.

The system has a potential for extension in different
directions. For instance, in terms of mechanisms of user
interaction, we envisage offering yet more interactivity
to the user for more efficient object manipulation. For
instance, it is fairly simple to “constrain” some objects in

Figure 5. The solver uses generic constraints that can be instantiated on the VE’s
objects.

the virtual environment what it would ensure that an
object will remain at the some location after the user has
interacted with the configuration. As well, taking
advantage of the incremental capabilities of the solver,
we could give the user the possibility of adding objects
on-the-fly and to choose the constraints for that objects
from a set of predefined constraints.

In its current form, the system is still faced with a
number of limitations, the most important being the
absence of an explanatory module that would provide the
user for justifications for the proposed solutions. Such a
module is even more important to explain why there
exist no acceptable solutions for some object positions
proposed by the user. Further work will be dedicated to
providing more feedback from the configuration system.

6. References
[1] Axling, T., Haridi, S, and Fahlen, L. (1996). Virtual reality
programming in Oz. In Proceedings of the 3rd
EUROGRAPHICS Workshop on Virtual Environments, Monte
Carlo, February 1996.
[2] Aylett, R. and Cavazza, M. Intelligent Virtual
Environments - A State-of-the-art Report. Eurographics 2001
[3] Nomura, Junji, Hikaru Ohata, Kayo Imamura, Robert J.
Schultz. (1992). Virtual Space Decision Support System and Its
Application to Consumer Showrooms. Matsushita whitepaper.
[4] Fernando, T., Murray, K., Wimalaratne, P. (1999). Software
Architecture for a Constraint-based Virtual Environment, ,
ACM International Symposium on Virtual Reality Software and
Technology, VRST 99, London. UK, December, 1999.
[5] Fa, M., Fernando, T., and Dew, P.M (1993). Interactive
Constraint-based Solid Modelling using Allowable Motion,
ACM/SIGGRAPH Symposium on Solid Modelling and
Applications, May 1993, pp 243-252
[6] Fleming, U., Coyne, R., Fenves, S., Garrett, J., Woodbury,
R. (1994). SEED –Software Environment to Support the Early
Phases in Building Design. Proceedings of IKM94, Weimar,
Germany, pp 5-10

[7] Lottaz, C., Clément, D., Faltings, B. and Smith, I.
(1999).Constraint-Based Support for Collaboration in Design
and Construction, Journal of Computing in Civil Engineering,
Vol. 13, No. 1, jan, 1999, pp. 23-35.
[8] Codognet, P. (1999). Animating Autonomous Agents in
Shared Virtual Worlds, proceedings DMS'99, IEEE
International Conference on Distributed Multimedia Systems,
Aizu, Japan, IEEE Press 1999.
[9] Jacobson, J and Hwang, Z. (2002). Unreal Tournament for
Immersive Interactive Theater. Communications of ACM, Vol.
45, No. I, January 2002. pp39-42.
[10] Lewis, M and Jacobson, J (2002). Games Engines in
Scientific Research. Communications of ACM, Vol. 45, No. I,
January 2002. pp27-31.
[11] Diaz, D. and Codognet, P. (2001). Design and
Implementation of the GNU Prolog System. Journal of
Functional and Logic Programming, Vol. 2001, No. 6, Oct
2001.
[12] European Commission – Joule Thermie Programme-
(2000). Tax Office Extension: Enschede (The Netherlands).
http://erg.ucd.ie / EC2000 /EC2000_PDFs / repo_enschede.pdf
(last visited 4/06/2002)
[13] British Educational Communications and Technology
agency (2001). Health and Safety: planning the safe installation
of ICT in schools. http://www.becta.org.uk / technology /
infosheets / html / safeuse.html (last visited 4/06/2002).

Figure 6. The user refines a given configuration by reallocating an object. As a result
of this, the environment reconfigures itself.

