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Abstract 
 
 In this paper, we present a new framework for the use 
of Virtual Reality (VR) in engineering design for 
configuration applications. Traditional VR systems 
support the visual exploration of a design solution but do 
not assist the user in exploring alternative solutions 
based on domain knowledge. Extending previous work in 
the area of Intelligent Virtual Environment, we propose 
an intelligent configuration system based on constraint 
logic programming (CLP), integrated in a real-time 3D 
graphic environment. This type of integration facilitates 
the expression of design knowledge in the VE and 
enables the user to interactively solve and/or refine a 
spatial configuration problem. In the system described in 
this paper, the user can visually explore configurations, 
but his interaction with objects of the configuration 
problem triggers new cycles of constraint propagation 
from the modified configuration to produce a new 
compatible solution. 
 
1. Introduction 
 

Spatial configuration problems are visual by nature 
and they are based on an implicit mapping between the 
“abstract problem space” (which is searched for solution 
configurations) and the physical environment in which 
these configurations are deployed. It is, however, 
difficult to make this implicit mapping transparent to the 
user. VR techniques have the potential to solve this 
problem but, in the current use of VR for engineering 
design, the knowledge is mainly expressed on the 
geometrical layout, textures, colours, etc. As a result of 
this, VR assistance in the use of the underlying design 
knowledge is restricted. To put it differently, it is 
currently not feasible to attach much design knowledge 
to the Virtual Environment (VE); consequently, users 
cannot use the “natural” interaction mechanisms of VR 
to interact with it and visualise the “dynamic” 
consequences of their interactions with the configuration. 

In this paper, we present a framework for 
configuration applications that, while preserving the 
natural interaction of traditional Virtual Reality systems, 

support the expression of design knowledge in the VE 
and the visualisation of the user’s interactions with the 
configuration. In the context of configuration 
applications this translates into the user being able to 
navigate and physically interact with 3D objects, but this 
interaction triggers the automatic reconfiguration of the 
configuration problem, thus allowing, the dynamic 
exploration of design solutions.  

We claim that this can be achieved by integrating 
Constraint Logic Programming (CLP) techniques into 
Virtual Environments, extending previous work in 
Intelligent Virtual Environments [1] [2]. Consequently 
and in order to demonstrate the viability of our approach, 
we have implemented an intelligent configuration system 
in which solutions can be interactively refined by the 
user through direct manipulation of objects in the virtual 
environment.   

In the next sections, after reviewing related work, 
we describe the system’s overview, software architecture 
and the proposed interaction model. We then discuss the 
formalisation of design knowledge in CLP, its 
expression in the VE and the interactive exploration of 
solutions.  We conclude by discussing the potential for 
further applications and generalisation of the approach. 
 
2. Related Work and Background 
 

In the field of virtual design, previous work has 
described the inclusion of a knowledge level for design 
applications [3]. In these systems, a Decision Support 
Systems was added to the virtual environment to validate 
the design configurations. However, this type of system 
validates configurations, more as a diagnostic system, 
rather than enabling the user the visualisation of his 
interactions with the configuration by, i.e, reconfiguring 
the configuration. In addition, standard decision support 
systems, such as rule-based systems, lack flexibility in 
their inference mechanisms, which prevents their use in a 
fully interactive system.  

Fernando et al. [4][5] have emphasised the 
importance of constraints in virtual design. However, 
they have been essentially dealing with graph-based 
techniques which do not support the interactive 
generation of alternative design solutions. In other 
words, graph-based techniques help to interactively find 



a solution by restricting the solution space but they are 
limited in terms of the generation of design alternatives 
once a solution has been found. 

The use of constraint programming for the 
expression of construction knowledge was pioneered by 
the SEED (Software Environment for Support the Early 
Phases in Building Design) project at CMU [6]. The 
SEED project introduced the conceptual basis for the 
representation of constraints to automatically generate 
layouts and argued that constraint programming provides 
a uniform mechanism to handle the domain related 
knowledge, because spatial configurations could be 
naturally expressed as constraints. Moreover, constraints 
have proven to be a useful format to express engineering 
design knowledge [7]. For instance, much engineering 
knowledge is stated in terms of constraints: regulations, 
codes of practice, behaviour models, cost restrictions, 
and planning strategies all employ explicit declaration of 
constraints which are easily translated into the “formal” 
constraints expression of constraint programming. 
Hence, constraint-based systems have the potential to be 
one of the most understandable and easiest to maintain of 
all reasoning systems. 

Furthermore, previous research in the area of 
Intelligent Virtual Environments has proposed the use of 
constraint logic programming as a supporting 
mechanism for intelligent object behaviour, its rationale 
being the seamless integration of symbolic reasoning 
techniques with the visual and interaction components: 
Axling et al. [1] and Codognet [8]. Both Axling and 
Codognet have put emphasis on the behaviour of 
individual objects in the virtual world. However, CLP 
naturally provides solutions for the combined behaviours 
for sets of objects, which is the property we use to 
implement behaviours for the virtual environment as a 
whole. 
 
3. System Overview and Architecture 
 

The system is an interactive 3D environment in 

which the user can freely navigate and interact with the 
world objects (e.g. by dragging and dropping them). That 
is, the system initially proposes a first solution (in the 
form of a configuration of objects) which serves as a 
starting point for user’s exploration of possible 
configurations. Once the user has explored this 
configuration, he can interact with it by displacing the 
constituent objects. The correct allocation of an object 
instantly triggers new solutions (configurations) from the 
solver which, in turn, are displayed in the virtual 
environment. 

The system has been developed using the Unreal 
TournamentTM (UT) game engine as a development 
environment. In addition to being an efficient graphics 
engine, it includes a development environment in which 
object behaviours and interactions with objects can be 
development environments, even for immersive systems 
[9][10]. The UT environment also supports the overall 
software architecture by allowing integration of external 
modules via dynamic link libraries or windows sockets. 
We have used TCP sockets as a a communication 
mechanism between the visualisation engine and the 
intelligent configuration system (see Figure 1). 

The intelligent configuration module is based on 
Constraint Logic Programming (CLP). More 
specifically, the CLP(FD) framework provides all the 
tools to represent design knowledge, mapping design 
constraints to “formal” constraints in CLP which express 
e.g. distance between objects, compatibility between 
materials, etc. In addition, it enables incremental 
solutions to be computed in user real-time, which 
ensures the interactivity of the system as a whole. We 
have used GNU Prolog [11] as a programming 
environment, which contains an efficient constraint 
solver over Finite Domains (FD). This allows the 
implementation of many different types of constraints 
which can be represented over a finite domain, i.e. an 
ordered list of properties. This makes possible to 
represent “semantic” constraints, i.e. constraints 
involving object properties such as materials, friction 

Figure 1. System Architecture: a GNU Prolog solver is integrated in the Unreal Engine 



coefficient, resistance to fire, etc. In the next section, we 
give a more detailed insight into the implementation 
considering the specific techniques used. 

It must be noted that, according to our results, the 
communication time for the overall cycle is on average 
less than 15ms, which is fully compatible with the user 
interaction (as the user is not navigating when interacting 
with objects). 

 
4.  An Intelligent Configuration System  

 
An intelligent configuration system is used as an 

application example. The data used in this configuration 
scenario is derived from a simple yet realistic example 
which uses real-world design knowledge in terms of 
building interior design for offices (a bank agency in our 
case). More specifically, the data used for both objects 
and constraints was drawn from real specifications 
[12][13]. 

In our intelligent configuration system, the spatial 
relationships between the objects in a layout 
configuration are all known and the constraints whose 
formulation depends on these relations reflect those 
specific spatial relations. Moreover, the objects involved 
in the configuration have been divided into non-movable 
objects (e.g. ventilation ducts, sources of heat, etc) and 
movable objects (e.g furniture: sofas, desks, etc). This is 
a purely semantic distinction which can be easily 
reversed. In our case, this means that whilst all objects 
take part in constraints specifying the design 
requirements, the user will only interact with the 
movable objects: the furniture. Consequently, when the 
user decides to reallocate a movable object, this, in turn, 
disrupts the imposed constraints in the configuration and 
forces the system to re-allocate the remaining movable 
objects to generate a solution compatible with all the 
design requirements  

In our case, the movable objects are: one vending 
machine, two desks (which represent the customer 

attention area), two sofas (waiting attention area), two 
automatic teller machines (ATMs), three fire 
extinguishers and four bins. This constitutes a subset of 
14 objects: considering the size of the environment and 
that the overall size of the available set of constraints for 
each object is eleven, the corresponding search space 
(abstract problem space) is substantial and indeed 
impossible to search systematically, even less so in real-
time. 

 
4.1 Formalisation of design knowledge in CLP 

In order to acquire and encapsulate the design 
knowledge into the appropriate formalism: CLP, the 
characterisation of building design requirements 
proposed by the SEED project has been adopted [6]. This 
characterisation proposes two intertwined levels for the 
formulation of design requirements: design unit and 
functional unit level. 

For our purpose, the encapsulation of design 
requirements was adopted at functional unit level: 
movable and non-movable objects (see Figure 3). The 
constraints or design requirements on those objects 
(functional units) have been classified in three groups: 
topological, local and global constraints. These 
constraints incorporate geometric as well as more 
“semantic” attributes such as lighting and temperature. 
Consequently, to assess a proposed design of a design 
unit (e.g the furniture layout of a room), the designers 
select and input the attribute values on the functional 
units (objects) and their “performance” is interactively 
evaluated by the user through the virtual environment. 

The topological constraints are inherited from the 
3D environment and are transformed into Prolog facts 
which describe room’s topological characteristics. 
Consequently, from the user’s perspective, there is a 
perfect matching between the topological characteristics 
of the 3D environment and the Prolog facts implemented 
in the solver. For instance, sources of heat or radiators 
and different lighting levels are visually apparent to the 

Figure 3. CLP formalisms enable the transformation of design knowledge into a set 
of constraints. 



user in the 3D environment. Therefore, both 
characteristics have been formalised as Prolog facts as 
follows: 

 
These facts define the coordinates of the sources of 

heat (a list of points X/Y in the search space) and the 
regions where the lighting level is less than 300 lux (a 
list whose each element defines a lighting value and an 
associated rectangle in the search space). 

In the example, there are also definitions for the 
location in the 3D environment of the following 
elements: power points, ventilation ducts, the central 
fountain, queuing area, counters, walls, luminosity and 
temperature levels. 

Local constraints are constraints on the attributes of 
a single object and specify how the object relates to the 
topological characteristics of the virtual environment.  
For instance, let us imagine that the user wanted to 
reallocate the desk object. The new object location 
would be constrained by the object’s attributes (or design 
requirements) expressed in the corresponding Prolog 
clause: 

 
This clause reads as follows: a desk should be 

placed at a minimum distance of, for instance, 6 meters 
from any furniture (e.g. the central fountain), at a 
minimum distance of from any ventilation duct, at a 
maximum distance of 4 from a power point, inside a 
region whose luminosity is between 300 and 500 flux 
and whose temperature is between 19° and 24°.  

Global constraints are constraints whose 

formulation involves more than one object and therefore, 
are imposed on the configuration. These constraints 
relate, for example, objects of each kind, objects of two 
different types, all the objects and so on. Consequently 
and following with the reallocation of a desk object, this 
not only disrupts its local properties but also the 
properties that link that object to the rest of the 
configuration.  For example, the following constraint: 

enforces the minimum and maximum distance between 2 
objects: a desk and an atm in this case. Hence, if the new 
allocation is nearer than six units or further than 12 it 
will force the atm to be reallocated which, in turn, will 
force any other object linked to the atm to behave in the 
same fashion. In this case, constraint propagation serves 
as the basics for interactive problem solving, as it solves 
the configuration problem created by the user by 
displacing an object. 

Global constraints are particularly relevant to 
express design requirements which involve group of 
objects. For instance, the following requirement: fire 
extinguishers and bins need to be distributed in the room 
to comply with health and safety regulations has been 
implemented in a similar fashion. 

It must be noted that there are two implementation 
levels for either local or global constraints: descriptive 
and primitive. In the descriptive level the user of the 
system (e.g the designer) states the constraint, or what it 
needs to be solved, without being concerned about how it 
is resolved. Hence, constraints can be easily asserted or 
retracted from the constraint solver. On the other hand, 
the primitive level is concerned with the optimization of 
the resolution process. That is, at a primitive level the 
main concerned is to find, or define, the most appropriate 
finite domains predicates which assure an efficient/fast 
solver.  

Figure 4 shows an example of this. In this case, the 

distance_constraint(desk,atm,6,12) 

object(desk  
[furniture_min(6), duc_mint(3), power_max(4), 
luminosity(300…500), temperature(19..24)] 

source_of_heat([X0/Y0, X1/Y1/,X2/Y2]) 

luminosity([lightingvalue = Area0, lightingvalue 
= Area1, lightingvalue = Area2]) 

Figure 4. Constraints implemented at descriptive and primitive level. 



descriptive level is concerned, firstly with matching the 
lighting levels defined in the solver, using the 
topological constraint lumninosity [LAreas], to those on 
the 3D environment; and secondly with defining the 
acceptable levels for a particular object, in this case a 
desk.  At a primitive level the constraint 
set_imposs_rect(LRect, 0, X, Y) ensures that an object 
X/Y, in this case the desk, cannot belong to a given 
rectangle A1/B1-A2/B2, defined by the 2 diagonal 
coordinates, in which the lighting levels are inferior to 
imposed minimum threshold or acceptable level. Thus, 
this further level of description maintains, at a 
descriptive level, the declarative nature of CLP as well as 
assuring an efficient solver. 

 
4.2 Interactive exploration of solutions 

First running the system results in the solver 
producing a set of variable allocations satisfying all the 
design constraints. These variables are translated in the 
virtual environment in terms of object types and 
positions, which instantiates all furniture objects at their 
respective locations, thus constituting a first design 
solution (object configuration). Once the initial 
configuration has been deployed, the user can explore 
this first solution by navigating in the virtual 
environment and test variants of the configuration by 
changing objects’ positions. 

For instance, let us image that the user wants to 
refine and/or further explore the configuration (e.g an 
ATM is too close to the queuing area).  Consequently, 
the user seizes the ATM object and proceeds to 
reallocate it while h/she explores the 3D environment. 
Once a suitable location has been found the user will 
drop the object. In our implementation, the user’s actions 
trigger the corresponding Unreal events.  For instance, 
when the object is dropped an unreal event is triggered 
which sends the object’s location to the solver in the 
appropriate query format (e.g atm=1/12.).  

Consequently and continuing with the example, 
when the user seizes the atm object he is disturbing both 
the local and the global constraints attached to it. As 
shown in Figure 5, an ATM object, can only be allocated 
away from a, e.g,  source of heat (heat(Dist)) and, 
similarly, it needs to be away from any other object of 
the configuration a specified (distance_constraint(Obj1, 
Obj2, DMin, DMax). Thus, when the user decides to 
reallocate the object by dragging and dropping it to a 
new position, this, in turn, disrupts the imposed 
constraints in the configuration and forces the system to 
“propagate” all the constraints and to generate a solution 
compatible with the design requirements. This 
propagation and a non-deterministic search are the basic 
mechanisms for interactive exploration of solutions. 

Consequently, the user utilises the “natural” 
interaction mechanisms of VR to interact with the 
configuration problem and, the automatic reconfiguration 
of the configuration problem (see Figure 6) enables him 
to visualise the consequences of his interactions on the 
configuration. 

 
5. Conclusions 

 
We have presented a novel framework for the use of 

virtual environments in interactive virtual design. For 
design applications, this framework supports the 
expression of design knowledge in the VE and the 
exploration of new design solutions by refining previous 
ones, which would appear a natural process to many 
users. In other words, this framework supports the 
interactive exploration of the solution space of a spatial 
configuration problem. 

The system has a potential for extension in different 
directions. For instance, in terms of mechanisms of user 
interaction, we envisage offering yet more interactivity 
to the user for more efficient object manipulation. For 
instance, it is fairly simple to “constrain” some objects in 

Figure 5. The solver uses generic constraints that can be instantiated on the VE’s 
objects. 



the virtual environment what it would ensure that an 
object will remain at the some location after the user has 
interacted with the configuration. As well, taking 
advantage of the incremental capabilities of the solver, 
we could give the user the possibility of adding objects 
on-the-fly and to choose the constraints for that objects 
from a set of predefined constraints. 

In its current form, the system is still faced with a 
number of limitations, the most important being the 
absence of an explanatory module that would provide the 
user for justifications for the proposed solutions. Such a 
module is even more important to explain why there 
exist no acceptable solutions for some object positions 
proposed by the user. Further work will be dedicated to 
providing more feedback from the configuration system.  
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Figure 6. The user refines a given configuration by reallocating an object. As a result 
of this, the environment reconfigures itself.


