
GNU Prolog: beyond compiling Prolog to C

Daniel Diaz1 and Philippe Codognet2

1 University of Paris 1, CRI, bureau C1407
90 rue de Tolbiac, 75013 Paris, FRANCE

Daniel.Diaz@univ-paris1.fr
2 University of Paris 6, LIP6, case 169

8 rue du Capitaine Scott, 75015 Paris, FRANCE
Philippe.Codognet@lip6.fr

Abstract

We describe in this paper the compilation scheme of the GNU Prolog system.
This system is built on our previous experience of compiling Prolog to C in wamcc.
The compilation scheme has been however redesigned to overcome drawbacks of
the compilation to C. In particular, GNU-Prolog is based on a low-level mini-
assembly platform-independent language that makes it possible to avoid the
phase of compiling C code, and thus speeds up drastically compilation time. It
also makes it possible to produce small stand alone executable files as the result
of the compilation process. Interestingly, GNU Prolog is now compliant to the
ISO standard and includes several extensions (constraint solving, OS interface,
sockets, global variables, etc). The overall system is efficient and comparable in
performances with commercial systems.

1 Introduction

GNU Prolog is a free Prolog compiler supported by the GNU organization
(http://www.gnu.org/software/prolog). The development of GNU Prolog
started in January 1996 under the name Calypso. Discussions with the GNU
organization in late 1998 makes it released as a GNU product in April 1999:
GNU Prolog.

GNU Prolog is based on our experience with wamcc. The main novelty of
wamcc [4] was to translate Prolog to C but with also the idea of translating a
WAM branching into a native code jump in order to reduce the overhead of
calling a C function, see [4] for details. wamcc shown that this approach was an
attractive alternative to the classical solution consisting in a WAM emulator.
Indeed, the performances of this unoptimized system were close to commercial
systems based on a highly optimized emulator. Moreover, many ideas of wamcc
have inspired the designers of some Prolog systems since its diffusion in 1992.
From the user point of view the main advantage of wamcc was its ability to pro-
duce stand alone executables while most other Prolog systems need the presence
of the emulator at run-time. There is however a serious drawback when compil-
ing Prolog to C, which is the size of the C file generated and the time taken to

II

compile such a big program by standard C compilers (e.g. gcc). Indeed, a Prolog
program compiles to many WAM instructions (e.g. the 3000 lines of the GNU
Prolog compiler give rise to 12000 WAM instructions) and trying to inline each
WAM instruction could lead to a very big C file that cannot be handled by the
C compiler. In order to cope with big Prolog sources we decided, in wamcc, to
translate most WAM instructions to a call to a C function performing the treat-
ment. Obviously the execution is a bit slowed down but the compilation is much
faster (and the executable is smaller). However, even with this solution, the C
compiler took too much time for big sources, especially in trying to optimize the
code produced.

The novelty of the GNU Prolog compilation scheme is to translate a WAM
file into a mini-assembly (MA) file. This language has been specifically designed
for GNU Prolog. The idea of the MA is then to have a machine-independent
intermediate language in which the WAM is translated. The corresponding MA
code is mapped to the assembly language of the target machine. In order to
simplify the writing (i.e. porting) of such mappers the instruction set of MA must
be simple, in the spirit of the LLM3 abstract machine for Lisp [3], as opposed
to the complex instruction set of the BAM designed for Aquarius Prolog [8].
Actually, the MA language is based on 11 instructions, mostly to handle the
control of Prolog and to call a C function (performing most of the treatment).
This new compilation process is between 5-10 times faster than wamcc+gcc. The
rest of this paper is devoted to a detailed explanation of this compilation scheme.

Moreover, wamcc had been designed as an experimental platform to provide
a sound basis for various extensions (like Constraint Logic Programming). Due
to this choice, several functionalities were missing in wamcc (e.g. no floating
arithmetic, no stream support,...) and the whole system was not robust enough.
The main goal of GNU Prolog was then to provide a free, open, robust, extensible
and complete Prolog system. Like wamcc it should be able to produce efficient
stand alone executables but overcoming all limitations cited above.

GNU Prolog is a complete system including: floating point numbers, streams,
dynamic code, DCG, operating system interface, sockets, a Prolog debugger,
a low-level WAM debugger, a line editing facility with completion on atoms,
etc. GNU Prolog offers more than 300 Prolog built-in predicates and is com-
pliant to the ISO standard for Prolog [7] (GNU Prolog is today the only free
Prolog system really compliant to this standard). There is also a powerful bidi-
rectional interface between Prolog and C, featuring implicit Prolog ↔ C type
conversion, transparent I/O argument handling, non-deterministic C code, ISO
error support, etc. This is a key point to allow users to write their own exten-
sions. Finally, GNU Prolog includes a very efficient constraint solver over finite
domains inspired from clp(FD) [5,6] containing many predefined constraints:
arithmetic constraints, boolean constraints, symbolic constraints, reified con-
straints; there are more than 50 FD built-in constraints/predicates, and several
predefined labeling heuristics. Moreover the solver is extensible, and new high-
level constraints can be easily defined by the user and defined in terms of simple
primitives.

III

The rest of this paper is organized as follows. Section 2 introduces the MA
language while section 3 describes how this language can be mapped to a specific
architecture. Section 4 is devoted to the link phase. Performance evaluation is
detailed in Section 5, and a short conclusion ends the paper.

2 The Mini-assembly Language

2.1 Overview

We here describe the mini-assembly (MA) language. The idea of the MA lan-
guage is to have a machine-independent intermediate language in which the
WAM is translated. The design of MA comes from the study of the C code pro-
duced by wamcc. Indeed, in the wamcc system, most WAM instructions given rise
to a call to a C function performing the treatment (e.g. unification, argument
loading, environment and choice-point management). The only exceptions were
obviously instructions to manage the control of Prolog and some short instruc-
tions that were inlined. The MA language has been designed to avoid the use of
the C stage and thus has instructions to handle the Prolog control, to call a C
function and to test/use its returned value. The MA file is then mapped to the
assembly of the target machine (see section 3) from which an object is produced.
Thus, the wamcc sequence: WAM → C (→ assembly) → object becomes in GNU
Prolog: WAM → MA → assembly → object.

In order to simplify the writing of translators of the MA to a given architec-
ture (i.e. the mappers), the MA instruction set must be simple: it only contains
11 instructions.

2.2 The MA Instruction Set

Here is a description of each MA instruction:

pl jump pl label : branch the execution to the predicate whose correspond-
ing symbol is pl label . This symbol is an identifier whose construction
is explained later in section 2.3. This instruction corresponds to the WAM
instruction execute.

pl call pl label : branch the execution to the predicate whose corresponding
symbol is pl label after initializing the continuation register CP to the
address of the very next instruction. This instruction corresponds to the
WAM instruction call.

pl ret: branch the execution to the address given by the continuation pointer
CP. This instruction corresponds to the WAM instruction proceed.

pl fail: branch the execution to the address given by the last alternative (ALT
cell of the last choice point pointed by the WAM B register). This instruction
corresponds to the WAM instruction fail.

jump label : branch the execution to the symbol label . This instruction is used
when translating indexing WAM instructions to perform local control trans-
fer (e.g. try, retry or trust). This instruction has been distinguished from

IV

pl jump (even if both can be implemented/translated in a same manner)
since, on some machines, local jumps can be optimized.

call c fct name (arg ,...): call the C function fct name passing the argu-
ments arg ,... Each argument can be an integer, a float (C double), a string,
the address of a label, the address or the content of a memory location, the
address or the content of a WAM X or Y register. This instruction is used to
translate most of the WAM instructions.

fail ret: perform a Prolog fail (like pl fail) if the value returned by the
previous C function call is 0. This instruction is used after a C function
call returning a boolean to indicate its result (e.g. functions performing the
unification).

jump ret: branch the execution to the address returned by the previous C func-
tion call. This instruction makes it possible to use C functions to determine
where to transfer the control. For instance, the WAM indexing instruction
switch on term is implemented via a C function accepting several addresses
and returning the address of the selected code.

move ret target : copy the value returned by the previous C function call to
target which can be either a memory location or a WAM X or Y register.

c ret: C return. This instruction is used at then end of the initialization function
(see below) to give back the control to the caller.

move reg1 ,reg2 : copy the content of the WAM X or Y register reg1 to the
register reg2 .

It is worth noticing the minimality of the language which is based on a very
restricted instruction set. Note however the presence of the move instruction to
perform a copy of WAM X or Y registers. We could instead invoke a C function
to perform such a move (using call c). However, those moves between registers
are rather frequent and the invocation of a C function would be costly. There is
thus a compromise to find between the minimality of the instruction set and the
performance. Obviously, it is possible to extend this instruction set (e.g. adding
arithmetic instructions) but this will complicate much more the writing of the
mappers to assembly. Performance evaluation will show that this instruction set
gives good results.

Beside these instructions, the MA language include several declarations which
are presented now. The keyword local specifies a local symbol (only visible in
the current object) while global allows other object to see that symbol.

pl code local/global pl label : define a Prolog predicate whose correspond-
ing symbol is pl label . For the moment all predicates are global (i.e. visible
by all other Prolog objects). But local will be used when implementing a
module system.

c code local/global/initializer label : define a function that can be ex-
ternally called by a C function. The use of initializer ensures that this
function will be executed first, when the Prolog engine is started. Only one
function per file can be declared as initializer.

V

long local/global ident = value : allocate the space for a long variable
whose name is ident and initializes it with the integer value . The initial-
ization is optional (i.e. the = value part can be omitted).

long local/global ident (Size): allocate the space for an array of Size

longs whose name is ident .
The WAM → MA translation can be performed in linear time w.r.t. the size
of the WAM file (the translation is performed on the fly while the WAM file
is read).

2.3 Associating an Identifier to a Predicate Name

Since the MA language is later mapped to the assembly of the target machine
only classical identifiers can be used (a letter followed by letters, digits or the
underscore character). In particular, it is necessary to associate such an identi-
fier (referenced as pl label in section 2.2) to each predicate. Since the syntax
of identifiers is more restrictive than the syntax of Prolog atoms (which can
include any character using quotes) GNU Prolog uses an hexadecimal repre-
sentation where each predicate name is translated to a symbol beginning with
an X followed by the hexadecimal notation of the code of each character of the
name followed by an underscore and the arity. For instance append/3 is coded
by the symbol X617070656E64 3 (61 is the hexadecimal representation of the
code of a, 70 is associated to p, ...). The linker is then responsible for resolving
external references (e.g. call to built-in predicates or to user predicates defined
in an other object). The output of the linker is filtered by GNU Prolog to de-
code eventual hexadecimal notations in case of errors (e.g. undefined predicate,
multiple definitions for a predicate).

2.4 An Example

We here present the MA code associated to the simple clause p(T,g(U),V):-
q(a,T,V,U). Associated WAM instructions are shown as comment.

% gplc -M t.pl
% more t.ma
pl_code global X70_3 ; define predicate p/3

call_c Get_Structure(at(2),1,X(1)) ; get_structure(g/1,1)
fail_ret
call_c Unify_Variable() ; unify_variable(x(3))
move_ret X(3)
move X(0),X(1) ; put_value(x(0),1)
call_c Put_Atom(at(3)) ; put_atom(a,0)
move_ret X(0)
pl_jump X71_4 ; execute(q/4)

long local at(4) ; table for 4 atoms

VI

c_code initializer Object_Initializer ; object initializer
call_c Create_Atom("t.pl") ; atom #0 is ’t.pl’
move_ret at(0)
call_c Create_Atom("a") ; atom #3 is ’a’
move_ret at(3)
call_c Create_Atom("g") ; atom #2 is ’g’
move_ret at(2)
call_c Create_Atom("p") ; atom #1 is ’p’
move_ret at(1)
call_c Create_Pred(at(1),3,at(0),1,1,&X70_3)
c_ret ; define predicate p/3

It is easy to see that most WAM instructions give rise to a C function call
(e.g. call c Get Structure()). Calls to functions that can fail (unification) are
followed by a fail ret that performs a Prolog fail if the returned value is 0. Note
the presence of the MA instruction move to perform a copy of WAM registers
(associated to the WAM instruction put value(x(0),1)).

According to the encoding presented in section 2.3, the symbol X70 3 is
associated to p/3 (and X71 4 to q/4) .

It is worth noting how atoms are managed. All atoms are classically stored
in a hash-table. To cope with separate linking the hash-table must be built
at run-time (while it is possible to compute hash-values at compile-time in
the presence of a single file). For that the function Object Initializer is
first invoked. It is responsible for updating the atom table with atoms needed
by the object. The hash value of each atom is then stored in a local array
(at(atom number)) and is used by instructions handling atoms (e.g. put atom)
or functors (e.g. get structure). The initialization function also updates the
predicate table with predicates defined in the object. Both properties (pub-
lic/private, static/dynamic, user/built-in) and the address of the code of each
predicate are added. The knowledge of the address of the code is only necessary
for meta-call (e.g. to implement call/1) since all other references are resolved by
the linker. The way the initializer function is automatically invoked at run-time
is explained later in section 4.

3 Mapping the Mini-assembly to a Target Machine

The next stage of the compilation consists in mapping the MA file to the assem-
bly of the target machine. Since MA is based on a reduced instruction set, the
writing of such translators is simplified. However, producing machine instruc-
tions is not an easy task. The first translator was written with the help of a C
file produced by wamcc. Indeed, compiling this file to assembly with gcc gave us
a first solution for the translation (since the MA instructions corresponds to a
subset of that C code). We have then generalized this by defining a C file (now
independently from wamcc). Each portion of this C code corresponds to a MA
instruction and the study of the assembly code produced by gcc is a good start-
ing point. This gives a first information about register conventions, C calling

VII

conventions,... However, to further optimize the assembly code it is necessary
to refer to the technical documentation of the processor together with the ABI
(Application Binary Interface) used by the operating system. Our experience is
that such a backend for a new architecture can be produced within a week.

Here is the interesting portion of the linux/ix86 assembly code corresponding
to the definition of p/3 (the associated MA code is shown as comment):

% gplc -S t.pl
% more t.s
fail:

movl 1028(%ebx),%eax # fail
jmp *-4(%eax)

.globl X70_3 # pl_code global X70_3
X70_3:

movl at+8,%eax # call_c Get_Structure(at(2),1,X(1))
movl %eax,0(%esp) # arg at(2)
movl $1,4(%esp) # arg 1 ($1=immediate value)
movl 4(%ebx),%eax
movl %eax,8(%esp) # arg X(1)
call Get_Structure
testl %eax,%eax # fail_ret
je fail
call Unify_Variable # call_c Unify_Variable()
movl %eax,12(%ebx) # move_ret X(3)
movl 0(%ebx),%eax # move X(0),X(1)
movl %eax,4(%ebx)
movl at+12,%eax # call_c Put_Atom(at(3))
movl %eax,0(%esp)
call Put_Atom
movl %eax,0(%ebx) # move_ret X(0)
jmp X71_4 # pl_jump X71_4

.data
.local at # long local at(4)
.comm at,16,4

Here again, a crucial point is that the mapping MA→ assembly is executed in
linear time w.r.t. the size of the MA file (the translation is done on the fly while
the MA file is read). Obviously the translation to the assembly of the target
machine makes room for several optimizations. For instance the ix86 mapper
uses the ebx register as a global register to store the address of the bank of
WAM registers (consisting in 256 X registers followed by control registers: H, B,
...). Maintaining this address in ebx makes it possible to load/store (into/from a
processor register) any WAM register with only one machine instruction. More
generally, it is possible to use machine registers if it is ensured that they are
saved and restored by functions using them (the ABI gives this information).

VIII

Note the definition of a fail label which performs a WAM fail. The associ-
ated code first loads the value of the B register (pointer to the last choice-point)
and then branches to the value of the ALT cell of that choice-point (stored at the
offset -1(*4 bytes) from B).

Another optimization used in this translation consists in using an original
argument passing scheme. Under ix86, arguments are passed into the stack (as
usually for CISC processors). The classical way to call a C function is then to
use push instructions to initialize arguments, to call the function and, after the
return of the function, either to use several pop instructions or to perform a
stack pointer adjustment (adding a positive number to it). Many optimizing
C compilers try to group these stack adjustments delaying them as long as
possible to only perform one addition. GNU Prolog does better by avoiding
all adjustements. This is done by reserving at the start of the Prolog engine
enough space in the stack 1 and then copying arguments on that space (cf. movl
...,offset (%esp) instructions with offset a positive integer). This could not
be done when compiling to C in wamcc (like many other optimizations included
in the GNU Prolog mappers).

4 Linking

All objects are linked together at link-time with the GNU Prolog libraries: Prolog
built-in predicate library, FD built-in constraint/predicate library and run-time
library. This last library contains in particular functions implementing WAM in-
structions (e.g. Get Structure(),...). Linked objects come from: Prolog sources,
user C foreign code or FD constraint definition. This stage resolves external sym-
bols (e.g. a call to a predicate defined in another module).

Since a Prolog source gives rise to a classical object, several objects can be
grouped in a library (e.g. using ar under Unix). The Prolog and FD built-in
libraries are created using this way (the user can also define his own libraries).
Defining a library allows the linker to extract from it only the needed objects,
i.e. those containing statically referenced functions/data. For this reason, GNU
Prolog offers an option to generate small executables by avoiding the inclusion
of most unused built-in predicates. To cope with meta-calls in that case, GNU
Prolog provides a directive to force the linker to include a given predicate. To
further reduce this size of the executables the linker should exclude all (instead
of most) unused predicates. To do this we should define a built-in predicate per
Prolog file (similarly to what is done for the C standard library) since the object
is the unit of inclusion of the linker (i.e. when a symbol is referenced the whole
object where this symbol is found is linked). For the moment built-in predicates
are grouped by theme, for instance, a program using write/1 will give rise to
an executable also containing the code of writeq/1, display/1,... In the future
we will define only one predicate per file. In the same spirit we will also define
only one C function associated to a WAM instruction per file (e.g. to avoid to
link the code of Put Structure() if this instruction is not used).
1 enough to store the maximal number of arguments of library functions.

IX

In section 2.4 we have mentioned the role of the initializer function (called
Object Initializer in our example). It is worth explaining how this function
is invoked. Indeed, the Prolog engine must be able to find dynamically at run-
time all objects selected by the linker and execute their initializer function. The
solution retained in GNU Prolog consists in marking all objects with magic
numbers together with the address of the initializer function. At run-time, a
pertinent portion of the data segment is scanned to detect each linked object
(thanks to the magic numbers) and invoke its initializer.

5 Prolog Performance Evaluation

5.1 Compilation

Lines object executable
Program time size time size

boyer 362 0.520 44 0.650 154
browse 88 0.200 11 0.420 129
cal 131 0.190 11 0.320 118
chat parser 905 1.430 113 1.620 221
ham 48 0.120 8 0.240 110
nand 518 0.850 61 1.020 310
nrev 52 0.100 4 0.280 112
poly 10 86 0.160 10 0.360 120
queens (16) 60 0.080 3 0.170 111
queens n (10) 37 0.070 4 0.270 112
reducer 307 0.420 30 0.570 148
sendmore 52 0.110 7 0.360 114
tak 24 0.060 2 0.200 110
zebra 42 0.090 5 0.190 107

pl2wam 3000 3.430 286 3.690 557

Table 1. GNU Prolog compilation evaluation

Table 1 presents the performances of the GNU Prolog compilation scheme on
a classical set of benchmarks, times are in seconds and sizes in KBytes. We have
also added the GNU Prolog pl2wam sub-compiler since it is a more representative
example. For each program, one can find: the number of lines of the Prolog source
program 2, the compilation time needed to produce the object, the size of the
object code (stripped), the total compilation time (including the link) and the
final executable size (stripped). Timings are measured on a Pentium II 400 Mhz
with 256 MBytes of memory running Linux RedHat 5.2.
2 neither blank lines nor comments are counted.

X

The size of (stripped) objects show that this approach really generates small
code (less than 10 KBytes for many benchmarks). The size of the whole exe-
cutable shows the interest of excluding most of unused built-in predicates. In-
deed, when all built-in predicates (Prolog+FD) are present the size is at least
596 KBytes (this is the size of the GNU Prolog interactive top-level). Let us
recall that we can even further reduce this size with a little reorganization of
GNU Prolog libraries (see section 4). The ability of GNU Prolog to produce
stand alone small executables is an important feature that makes it possible to
use them in many occasions (tools, web CGIs,...). Other Prolog systems cannot
produce such standalone executables since they always need the presence of the
emulator at run-time (500 KBytes to 2 MBytes).

Compilation timings are rather good and we have reached our initial goal
since GNU Prolog compiles 5-10 times faster than wamcc+gcc. Obviously this
factor is not constant and the gain is more effective on large programs (and
thus it is difficult to give an upper bound of the speedup factor). This is due to
the fact that the translation from the WAM to an object is done in linear time
(each translation only needs one pass) while a C compiler can need a quadratic
time (and even worse) for its optimizations. Table 2 illustrates this comparing
compilation times for both systems on some representative benchmarks.

Lines GNU wamcc Speedup
Program Prolog

cal 131 0.320 1.210 3.7
boyer 362 0.650 3.050 4.6
chat parser 905 1.620 10.120 6.3
pl2wam 3000 3.690 34.210 9.2

Table 2. Compilation speed - GNU Prolog versus wamcc

5.2 Benchmarking Prolog

In this section we compare GNU Prolog with one commercial system: SICS-
tus Prolog emulated and five academic systems: Yap Prolog, wamcc, BinProlog
(the last version is now commercialized), XSB-Prolog and SWI-Prolog. Table 3
presents execution times for those systems and the average speedup (or slow-
down when preceded by a ↓ sign) of GNU Prolog (the nand program could not
be run with XSB-Prolog). For each benchmark, the execution time is the average
of 10 consecutive executions.

To summarize, GNU Prolog is 1.6 times slower than Yap Prolog, the fastest
emulated Prolog system and also slightly slower than wamcc, mainly because of
a richer arithmetic support. On the other hand, GNU Prolog is 1.2 times faster
than SICStus emulated, 2.3 times faster than BinProlog, around 2.5 times faster
than XSB-Prolog and more than 4 times faster than SWI-Prolog (without taking

XI

GNU Yap wamcc SICStus Bin XSB SWI
Prolog Prolog Prolog Prolog Prolog Prolog

Program 1.0.5 4.2.0 2.21 3.7.1 5.75 1.8.1 3.2.8

boyer 0.322 0.187 0.270 0.315 0.576 0.830 1.322
browse 0.410 0.189 0.316 0.409 0.798 0.804 1.217
cal 0.032 0.032 0.030 0.030 0.033 0.031 0.031
chat parser 0.075 0.055 0.075 0.089 0.103 0.245 0.240
ham 0.293 0.170 0.336 0.329 0.393 0.582 0.723
nand 0.011 0.008 0.010 0.016 0.022 ?.??? 0.067
nrev 0.042 0.019 0.039 0.037 0.023 0.089 0.192
poly 10 0.023 0.013 0.020 0.024 0.031 0.056 0.097
queens (16) 0.223 0.136 0.126 0.404 0.378 0.751 2.261
queens n (10) 1.091 0.542 1.011 1.193 1.307 2.143 4.067
reducer 0.021 0.010 0.021 0.022 0.243 0.064 0.077
sendmore 0.026 0.020 0.015 0.047 0.063 0.087 0.166
tak 0.040 0.031 0.029 0.066 0.110 0.156 28.810
zebra 0.026 0.017 0.027 0.021 0.034 0.040 0.057

GNU Prolog speedup ↓ 1.6 ↓ 1.2 1.2 2.3 2.5 4.2

Table 3. GNU Prolog versus other Prolog systems

into account the tak benchmark). To be fair let us mention that had not enough
time to exaustively compare with all the Prolog systems and their variants. For
instance, SICStus Prolog can compile to native code for some architectures (e.g.
under SunOS/sparc but not yet under linux/ix86) and then it will be 2.5 times
faster than GNU Prolog on those platforms, BinProlog can partly compile to C
and CIAO Prolog seems a bit faster than GNU Prolog,...

Alltogether, this performance evaluation shows that a Prolog system based
on a simple, unoptimized WAM engine can nevertheless have good efficiency
with this MA-based native compilation scheme. Obviously further improvements
could be achieved by integrated all well-known WAM optimizations.

6 Conclusion

GNU Prolog is a free Prolog compiler with constraint solving over finite domains.
The Prolog part of GNU Prolog conforms to the ISO standard for Prolog with
also many extensions very useful in practice (global variables, OS interface, sock-
ets,...). The finite domain constraint part of GNU Prolog contains all classical
arithmetic and symbolic constraints, and integrates also an efficient treatment of
reified constraint and boolean constraints. The new compilation scheme of GNU
Prolog drastically speeds up compilation times in comparison to compiling to
C (5-10 times faster than wamcc+gcc). The MA language can be used by other
logic languages as a target language. This choice has been made for the Dyalog
system (a logic programming language with tabulation). GNU Prolog produces
native binaries and the executable files produced are stand alone. The size of

XII

those executable files can be quite small since GNU Prolog can avoid to link
the code of most unused built-in predicates. The performances of GNU Prolog
are close to commercial systems and several times faster than other popular free
systems.

References

1. H. Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
Logic Programming Series, MIT Press, 1991.

2. M. Carlsson. Design and Implementation of an Or-Parallel Prolog Engine.
PhD dissertation, SICS, Sweden, 1990.

3. J. Chailloux. La machine LLM3.
Technical Report RT-055, INRIA, 1985.

4. P. Codognet and D. Diaz. wamcc: Compiling Prolog to C.
In 12th International Conference on Logic Programming, Tokyo, Japan, MIT Press,
1995.

5. P. Codognet and D. Diaz. A Minimal Extension of the WAM for clp(FD).
In Proc. ICLP’93, 10th International Conference on Logic Programming. Budapest,
Hungary, MIT Press, 1993.

6. P. Codognet and D. Diaz. Compiling Constraint in clp(FD).
Journal of Logic Programming, Vol. 27, No. 3, June 1996.

7. Information technology - Programming languages - Prolog - Part 1: General Core.
ISO/IEC 13211-1, 1995.

8. P. Van Roy and A. Despain. High-Performance Logic Programming with the
Aquarius Prolog Compiler.
IEEE Computer, pp 54-67, 1992.

9. D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, Oct. 1983.

	GNU Prolog: beyond compiling Prolog to C

