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Abstract. We present the design and the implementation of clp(B):
a boolean constraint solver inside the Constraint Logic Programming
paradigm. This solver is based on local propagation methods and follows
the “glass-box” approach of compiling high-level constraints into primi-
tive low-level ones. We detail its integration into the WAM showing that
the necessary extension is truly minimal since only four new instructions
are added. The resulting solver is around an order of magnitude faster
than other existing boolean solvers.

1 Introduction

Constraint Logic Programming (CLP) combines both the declarativity of Logic
Programming and the ability to reason and compute with partial information
(constraints) on specific domains, thus opening up a wide range of applications.
Among the usual constraint domains currently developed in CLP, booleans are
widely investigated and can be found in several CLP languages, as for instance
CHIP [19], PrologIII [7] or clp(FD) [9].
The history of efficient machine solving of boolean problems goes back to the
early 60’s with the seminal work of Davis and Putnam, and, since that time,
many different algorithms and solvers have been developed and implemented.
The study of boolean problems indeed spread over different research communi-
ties, such as automated theorem proving, circuit design and verification, artificial
intelligence, operational research, pure logic and CLP. It is therefore not surpriz-
ing that many tools for solving boolean constraints exist, either as stand-alone
solvers, taking as input some special boolean formulation of the problem (e.g.
clauses or various other normal forms), or integrated into full CLP languages,
making it possible for a much easier and natural formulation of the problem.
However different algorithms have different performances, and it is hard to know
if, for some particular application, any specific solver will be able to solve it in
practise [18]. Obviously, the well-known NP-completeness of the satisfiability of
boolean formulas shows that we are tackling a difficult problem here.
Over recent years, local propagation methods, developement of which was pio-
neered in the CLP world by the CHIP language, have also been used to solve
boolean constraints with some success; in fact to such an extent that it has
become the standard tool in the commercial version of CHIP. This method



performs better than the original boolean unification algorithm for nearly all
problems and is competitive with special-purpose boolean solvers. A similar ap-
proach has been used to define clp(B/FD) where boolean constraint solving is
performed on top of the finite domain constraint solver of clp(FD) [4]. Indeed,
the boolean constraints are encoded thanks to the low-level X in r primitive
of clp(FD). This idea of compiling complex constraints into simpler low-level
constraints has been originally proposed for finite domain constraints by [20]
and called the “glass-box” approach. The clp(B/FD) approach has shown to
be fairly efficient (eight times faster than the CHIP propagation-based boolean
solver). Nevertheless, performances can be pushed a step further by simplifying
the data-structures used in clp(FD), which are indeed designed for full finite do-
mains constraints. They can be specialized by introducing explicitly a new type
and new instructions for boolean variables. It is possible, for instance, to reduce
the data-structure representing the domain of a variable and its associated con-
straints to only two words: one pointing to the chain of constraints to awake
when the variable is bound to 0 and the other when it is bound to 1. Also some
other data-structures become useless for boolean variables, and can be avoided.
The resulting clp(B) solver is very compact and simple; it is based again on the
glass-box approach, and only uses a single low-level constraint, more specialized
than the X in r construct, into which boolean constraints such as and, or or not
are decomposed. These simplifications improve the performances by more than
a factor two giving a solver which is around an order of magnitude faster than
other existing boolean solvers. The low-level primitive constraint at the core of
clp(B) can be implemented into a WAM-based logical engine with a minimal
extension: only four new abstract instructions are needed. Therefore this very
simple but very efficient boolean constraint solver can be incomporated into any
Prolog system very easily.

The rest of the paper is organized as follows: section 2 introduces boolean con-
straints. Section 3 presents clp(B) and the primitive constraint at the core of
the solver while section 4 describes its implementation into the WAM. Section 5
details performance evaluation and compares to other boolean solvers. A short
conclusion and research perspectives end the paper.

2 The boolean constraint system

2.1 Constraint systems

The simplest way to define constraints is to consider them as first-order formulas
interpreted in some non-Herbrand structure [10], in order to take into account
the particular semantics of the constraint system. Such declarative semantics
is adequate when a non-Herbrand structure exists beforehand and suits well
the constraint system (e.g. R for arithmetic constraints), but does not work
very well for more practical constraint systems (e.g. finite domains). Obviously,
it cannot address any operational issues related to the constraint solver itself.
Recently, another formalization has been proposed by [16], which can be seen



as a first-order generalization of Scott’s information systems [17]. The emphasis
is put on the definition of an entailment relation (noted `) between constraints,
which suffices to define the overall constraint system. A constraint system is thus
defined as a pair (D,`) satisfying the following conditions:

1. D is a set of first-order formulas closed under conjunction and existential
quantification.

2. ` is an entailment relation between a finite set of formulas and a single
formula satisfying some basic properties corresponding, roughly speaking, to
reflexivity, transitivity in information systems and introduction/elimination
of ∧ and ∃ in sequent calculus (see [16] for more explanations).

3. ` is generic: that is Γ [t/X] ` d[t/X] whenever Γ ` d, for any term t.

2.2 Boolean constraints

Definition
Let V be an enumerable set of variables. A boolean constraint on V is one of
the following formulas:

and(X, Y, Z) , or(X, Y, Z) , not(X, Y ) , X = Y , for X, Y, Z ∈ V ∪ {0, 1}

The intuitive meaning of these constraints are: X∧Y ≡ Z, X∨Y ≡ Z, X ≡ ¬Y ,
and X ≡ Y . We note B be the set of all such boolean constraints.

Let us now present the rules defining the propagation between boolean con-
straints.

Definition
Let B be the first-order theory on B -formulas presented in table 1:

0=0 1=1

and(X,Y,Z), X=0 → Z=0 and(X,Y,Z), Y=0 → Z=0
and(X,Y,Z), X=1 → Z=Y and(X,Y,Z), Y=1 → Z=X
and(X,Y,Z), Z=1 → X=1 and(X,Y,Z), Z=1 → Y=1

or(X,Y,Z), X=1 → Z=1 or(X,Y,Z), Y=1 → Z=1
or(X,Y,Z), X=0 → Z=Y or(X,Y,Z), Y=0 → Z=X
or(X,Y,Z), Z=0 → X=0 or(X,Y,Z), Z=0 → Y=0

not(X,Y), X=0 → Y=1 not(X,Y), X=1 → Y=0
not(X,Y), Y=0 → X=1 not(X,Y), Y=1 → X=0

Table 1. Boolean propagation theory B



Observe that it is easy to enrich, if desired, this constraint system by other
boolean constraints such as xor (exclusive or), nand (not and), nor (not or), ⇔
(equivalence), or ⇒ (implication) by giving the corresponding rules, but they
can also be decomposed into the basic constraints.
We can now define the entailment relation `B between boolean constraints and
the boolean constraint system:

Definitions
Consider a store Γ and a boolean constraint b.
Γ `B b iff Γ entails b with the extra axioms of B.
The boolean constraint system is (B ,`B).

It is worth noticing that the rules of B (and thus `B) precisely encode the
propagation mechanisms that will be used to solve boolean constraints. We have
indeed given the operational semantics of the constraint solver in this way.

3 Designing clp(B)

Here we are interested in designing a specific propagation-based boolean solver
that encodes exactly the propagation rules presented in table 1. This solver will
follow the glass-box paradigm and will be called clp(B). It will prove that local
propagation techniques are a very efficient way to deal with boolean constraints.
Moreover this solver indeed reduces to a surprisingly simple instruction set which
will make it possible to integrate boolean constraints in any Prolog compiler. It
is worth noticing that all well-known boolean solvers (CHIP, PrologIII, etc) are
based on the black-box approach, i.e. nobody knows exactly what there is inside
these solvers, except [8] which presents a glass-box (re)construction of a boolean
solver based on Binary Decision Diagrams (BDDs). From a design point of view,
clp(B) is very similar to clp(FD). It is based on a low-level primitive constraint
l0 <= l1, . . . , ln and it offers the possibility to define high-level constraints as
Prolog predicates. Complex boolean constraints are also translated at compile-
time by a preprocessor.

3.1 The primitive constraint l0 <= l1, . . . , ln

Since the initial domain of a boolean variable is 0..1 it can be reduced only
once. A constraint is only triggered when some of its variables have become
ground, and, if this activation is useful, then the constrained variable will also
become ground. Thus, the more appropriate primitive must allows us to express
propagation rules which look like “as soon as X is false then set Z to false”
and “as soon as both X and Y are true then set Z to true” (for and(X,Y,Z)).
Note the difference with the clp(B/FD) formulation where the primitive X in r
was used in a computational way to calculate the value (0 or 1) to assign. The
behavior of this primitive is very similar to the ask definition of and(X,Y,Z)
presented in [21]. Thus, we propose a primitive constraint l0 <= l1, . . . , ln where



c ::= l<=[l,...,l] (constraint)

l ::= X (positive literal)

-X (negative literal)

Table 2. Syntax of the constraint l0 <= l1, . . . , ln

each li is either a positive literal (X) or a negative literal (−X) (see table 2 for
a description of the syntax).
Associated to each literal li we define Xi as its variable and Bvaluei as its truth-
value. More precisely if li ≡ −X or li ≡ X then Xi = X. Similarly if li ≡ −X
(resp. li ≡ X) then Bvaluei = 0 (resp. Bvaluei = 1).

The intuitive meaning of l0 <= l1, . . . , ln being “l0 must be entailed in any store
which entails l1 ∧ ... ∧ ln” where li is entailed in a store iff Xi = Bvaluei is
entailed in this store.

Without any loss of generality, we can consider that there is only either one
or two literals in the body of the primitive constraint. Indeed, the case n =
0 comes down to unify X0 to Bvalue0 (see section 4.1) and the case n > 2
can be rewritten by replacing l0 <= [l1, l2, l3, ..., ln] by l0 <= [l1, I2], I2 <=
[l2, I3], ..., In−1 <= [ln−1, ln], where each Ik is a distinct new boolean variable.
In clp(B) a preprocessor is used for these code-rewriting. This decomposition
will allow us to implement very efficiently the tell operation as shown below since
only remain the two cases n = 1 and n = 2.

3.2 Defining the constraints

The glass-box approach for designing constraint solvers, as originally proposed
by [20] and developed in [9,5], consists in defining high-level constraints such
as linear equations and inequations in finite domains or conjunction, disjunction
and negation in booleans by means of very simple and unique low-level primitive
constraint. We here define a high-level constraint for each boolean constraint
thanks to the l0 <= l1, . . . , ln primitive which allows us to directly encode the
propagation rules above presented. The definition of the solver is then quite
obvious and presented in table 3.

4 Integration of l0 <= l1, . . . , ln into the WAM

Let us now specify the abstract instruction set needed to implement the boolean
constraint solver, i.e. the unique constraint l0 <= l1, . . . , ln, into the standard
abstract machine used in Logic Programming, namely the Warren Abstract Ma-
chine. See [22,1] for a comprehensive introduction to the WAM.



and(X,Y,Z):- Z <= [X,Y], -Z <= [-X], -Z <= [-Y],

X <= [Z], -X <= [Y,-Z],

Y <= [Z], -Y <= [X,-Z].

or(X,Y,Z):- -Z <= [-X,-Y], Z <= [X], Z <= [Y],

-X <= [-Z], X <= [-Y,Z],

-Y <= [-Z], Y <= [-X,Z].

not(X,Y):- X <= [-Y], -X <= [Y],

Y <= [-X], -Y <= [X].

Table 3. The boolean solver definition

4.1 Modifying the WAM for boolean variables

Here, we explain the necessary modifications of the WAM to manage a new data
type: boolean variables. They will be located in the heap, and an appropriate tag
is introduced to distinguish them from Prolog variables. Dealing with boolean
variables slightly affects data manipulation, unification, indexing and trailing
instructions.

Data manipulation. Boolean variables, as standard WAM unbound variables,
cannot be duplicated (unlike it is done for terms by structure-copy). For example,
loading an unbound variable into a register consists of creating a binding to the
variable whereas loading a constant consists of really copying it. In the standard
WAM, thanks to self-reference representation for unbound variables, the same
copy instruction can be used for both of these kinds of loading. Obviously, a
boolean variable cannot be represented by a self-reference, so we must take care
of this problem. When a source word Ws must be loaded into a destination word
Wd, if Ws is a boolean variable then Wd is bound to Ws or else Ws is physically
copied into Wd.

Unification. A boolean variable X can be unified with:

– an unbound variable Y : Y is just bound to X,
– an integer n: if n = 0 or n = 1 the pair (X, n) is enqueued and the consistency

procedure is called (see sections 4.3 and 4.4).
– another boolean variable Y : equivalent to X <= [Y ], −X <= [−Y ],

Y <= [X] and −Y <= [−X]1.

Indexing. The simplest way to manage a boolean variable is to consider it as an
ordinary unbound variable and thus try all clauses.

1 we will describe later how constraints are managed.



Trailing In the WAM, unbound variables only need one word (whose value is
fully defined by their address thanks to self-references), and can only be bound
once, thus trailed at most once. When a boolean variable is reduced (to an integer
n = 0/1) the tagged word <BLV, > (see section 4.2) is replaced by <INT, n> and
the tagged word <BLV, > may have to be trailed. So a value-trail is necessary.
Hence we have two types of objects in the trail: one-word entry for standard
Prolog variables, two-word entry for trailing one previous value.

4.2 Data structures for constraints

clp(B) uses an explicit queue to achieve the propagation (i.e. each triggered
constraint is enqueued). It is also possible to uses an implicit propagation queue
as discussed in [9]. The register BP (Base Pointer) points to the next constraint
to execute, the register TP (Top Pointer) points to the next free cell in the queue.
The other data structure concerns the boolean variable. The frame of a boolean
variable X is shown in table 4 and consist of:

– the tagged word,
– the list of constraints depending on X. For reasons of efficiency two lists are

used: constraints depending on −X (Chain 0) and constraints depending on
X (Chain 1).

Chain 1 (pointer to a R Frame)

Chain 0 (pointer to a R Frame)

BLV unused

Table 4. Boolean variable frame (B Frame)

Since there are at most 2 literals in the body of a constraint c ≡ l0 <= l1, . . . , ln,
if c depends on X (i.e X1 = X or X2 = X) it is possible to distinguish the case
n = 1 from the case n = 2. Intuitively, in the case n = 1 the constraint c can be
solved as soon as X is ground while c can still suspend until the other variable
is ground in the case n = 2. (see section 4.4 for more details). So, the case n = 2
requires more information about the constraint to trigger since it is necessary
to check the other variable before executing it. The frame associated to a record
(R Frame) of the list Chain 0/1 consists of:

– the address of the boolean which is constrained (i.e. X0),
– the value to affect (i.e. Bvalue0),
– only if n = 2: the address of the other involved boolean variable
– only if n = 2: the value to be satisfied by the other involved variable



Table 5 summarizes the contents of a R Frame.

It is worth noting that, in the case n = 2, a record is necessary in the appropriate
list of X1 with a pointer to X2 and also in the appropriate list of X2 with a pointer
to X1. This “duplication” is very limited since it only involves 2 additional words.
This is enhanced in figure 1 which shows the data structures involved in the
constraint Z<=[-X,Y] (which could be used in the definition of xor(X,Y,Z)). The
alternate solution would use 1 additional word to count the number of variables
which suspend (the constraint being told as soon as this counter equals 0).

Bvalue 2 \ (only used

Blv 2 Adr / if Bloc2 Flag is true)

Bloc2 Flag (case n = 2 ?)

Tell Bvalue

Tell Blv Adr (a pointer to a B Frame)

Next Record (a pointer to a R Frame)

Table 5. Record Frame (R Frame)

4.3 Compilation scheme and instruction set

The compilation of a constraint l0 <= l1, . . . , ln consists of two parts:

– loading X0,...,Xn into WAM temporaries (i.e. Xi registers),
– installing and telling the constraint, i.e. creating the necessary R Frame(s),

detecting if the body of the constraint is currently entailed by the store (see
section 3.1) to enqueue the pair (X0, Bvalue0) and to call the consistency
procedure. (described in section 4.4).

Loading instructions are:

b load variable(Vi,Xj)
binds Vi to a boolean variable created on top of the heap and puts its address
into Xj.

b load value(Vi,Xj)
let w be the dereferenced word of Vi, if it is:
– an unbound variable: similar to b load variable(w,Xj).
– an integer n: fails if n 6= 0 and n 6= 1 or else n is pushed on the heap and

its address is stored into Xj.
– a boolean variable: its address is stored into Xj.



Variable X

Chain_1

Chain_0

BLV

Chain_1

Chain_0

BLV

Chain_1

Chain_0

BLV

Variable Y

Variable Z

BValue_2=1

Blv_2_Adr

Bloc2_Flag=On

Tell_BValue=1

Tell_Blv_Adr

Next_Record

BValue_2=0

Blv_2_Adr

Bloc2_Flag=On

Tell_BValue=1

Tell_Blv_Adr

Next_Record

R_Frame R_Frame

Fig. 1. Data structures involved in the constraint Z<=[-X,Y]

Install and telling instructions (defined in the case n = 1 or n = 2) are:

b install and tell cstr1(X0,bvalue0,X1,bvalue1)
two cases depending on X1:
– X1 is an integer: if X1=bvalue1, (X0, bvalue0) is enqueued and the con-

sistency procedure called (else the constraint succeeds immediately as
the premise is false).

– X1 is a boolean variable: an R Frame (created on the top of the heap) is
added to the appropriate list of X1 recording X0 and bvalue0.

b install and tell cstr2(X0,bvalue0,X1,bvalue1,X2,bvalue2)
three cases depending on X1 and X2:
– X1 is an integer:

it behaves like b install and tell cstr1(X0,bvalue0,X2,bvalue2).
– X2 is an integer:

it behaves like b install and tell cstr1(X0,bvalue0,X1,bvalue1).
– X1 and X2 are two boolean variables: an R Frame (created on the top of

the heap) is added to the appropriate list of X1 recording X0, bvalue0



and X2, bvalue2, and similarly an R Frame is added to the appropriate
list of X2 recording X0, bvalue0 and X1, bvalue1.

It is worth noticing that only 4 instructions are needed to implement this boolean
solver into the WAM. The extension is really minimal. Our experience has shown
that in this way only a few days are necessary to integrate boolean constraints
into a Prolog compiler whose sources are well-known.
Table 6 shows an example of code generated for the constraint and(X,Y,Z).

and/3: b load x value(0,0) X(0) = address of X

b load x value(1,1) X(1) = address of Y

b load x value(2,2) X(2) = address of Z

b install and tell cstr2(2,1,0,1,1,1) Z <= [X,Y]

b install and tell cstr1(2,0,0,0) -Z <= [-X]

b install and tell cstr1(2,0,1,0) -Z <= [-Y]

b install and tell cstr1(0,1,2,1) X <= [Z]

b install and tell cstr2(0,0,1,1,2,0) -X <= [Y,-Z]

b install and tell cstr1(1,1,2,1) Y <= [Z]

b install and tell cstr2(1,0,0,1,2,0) -Y <= [X,-Z]

proceed Prolog return

Table 6. Code generated for and(X,Y,Z)

4.4 The consistency procedure

This procedure is responsible for ensuring the consistency of the store. It re-
peats the following steps until the propagation queue is empty (or until a failure
occurs):
Let (X, Bvalue) be the pair currently pointed by BP.

– If X is an integer, there are two possibilities:
• X = Bvalue: success (Check Ok)
• X 6= Bvalue: failure (Fail)

– else the boolean variable X is set to Bvalue (Reduce) and each constraint
depending on X (i.e each record of Chain Bvalue) is reconsidered as follows:
• case n = 1 : the pair (X0, Bvalue0) is enqueued.
• case n = 2: let us suppose that X = X1, the case X = X2 being identical.

The variable X2 must be tested to detect if the constraint can be solved:
∗ X2 is an integer: if X2 = Bvalue2 then the pair (X0, Bvalue0) is

enqueued or else the constraint is already solved (Solved).
∗ X2 is a boolean variable: the constraint still suspends (Suspend).



Each constraint (X, Bvalue) in the queue will be activates and can have one of
the following issues:

– Reduce: the boolean variable X is set to the integer Bvalue,
– Check Ok: X already equals Bvalue,
– Fail: X is an integer different from Bvalue.

When a constraint (X, Bvalue) has Reduce as issue, the propagation reconsider
all constraints depending on X. Each such constraint will be enqueued in order
to be activated (and taken into account by the above cases) or ignored (only if
n = 2) due to:

– Suspend: the other variable of the constraint is not yet ground,
– Solved: the other variable is ground but does not correspond to the “sign”

of its literal, i.e. the premise is false.

4.5 Optimizations

Obviously, Check Ok corresponds to a useless tell since it neither reduces the
variable nor fails. As first pointed out in the design of clp(FD) we can avoid
some of such tells [9]. However, in the simpler framework of clp(B), empirical
results show that there is no gain in terms of efficiency. Indeed, a useless tell
only consists in a test between two integers and the detection of the possibility
to avoid such a tell also involves a test between integers.

The Solved issue also corresponds to a useless work since the constraint is already
entailed (see [5]).

Figure 2 makes it possible to estimate the proportion of each issue for some
instances of our benchmarks.

5 Performances of clp(B)

5.1 The benchmarks

In order to test the performances of clp(B) we have tried a set of traditional
boolean benchmarks:

– schur: Schur’s lemma. The problem consists in finding a 3-coloring of the
integers {1 . . . n} such that there is no monochrome triplet (x, y, z) where
x + y = z. The formulation uses 3×n variables to indicate, for each integer,
its color. This problem has a solution iff n ≤ 13.

– pigeon: the pigeon-hole problem consists in putting n pigeons in m pigeon-
holes (at most 1 pigeon per hole). The boolean formulation uses n × m
variables to indicate, for each pigeon, its hole number. Obviously, there is a
solution iff n ≤ m.
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Fig. 2. Proportion of each issue of the consistency procedure

– queens: place n queens on a n×n chessboard such that there are no queens
threatening each other. The boolean formulation uses n × n variables to
indicate, for each square, if there is a queen on it.

– ramsey: find a 3-coloring of a complete graph with n vertices such that there
is no monochrome triangles. The formulation uses 3 variables per edge to
indicate its color. There is a solution iff n ≤ 16.

All solutions are computed unless otherwise stated. The results presented below
for clp(B) do not include any heuristics and have been measured on a Sun Sparc
2 (28.5 Mips).

5.2 Presentation of other boolean solvers

Here, we present the set of boolean solvers, based on different techniques, which
will be used in the following section to evalute the performances of clp(B). It
is worth noticing that many of them are special-purpose boolean solvers, which
are intended to take a set of boolean formulas as input while only clp(B/FD)
and CHIP provide boolean solvers integrated into full CLP languages, offering
therefore more flexibility. These solvers are described in more details in [6].



clp(B/FD) is a CLP language on booleans built on the top of clp(FD) [4].
Times for clp(B/FD) were also measured on a Sun Sparc 2. Exactly the
same programs were run on both systems.

CHIP is also a CLP language (and not only a constraint solver) and thus ac-
cepts the same programs as clp(B). Moreover, it also uses a boolean con-
straint solver based on finite domains2. Times for CHIP were also measured
on a Sun Sparc 2. Exactly the same programs were run on both systems.

Adia is an efficient boolean constraint solver based on the use of BDDs [13].
Time measurements presented below are taken from [15] who tries four dif-
ferent heuristics on a Sun Sparc IPX (28.5 Mips). We have chosen the best
of these four timings for Adia. Note that the BDD approach computes all
solutions and is thus unpracticable when we are only interested in one so-
lution for big problems such as queens for n ≥ 9 and schur for n = 30.

Enumeration method is presented in [14] who provides time measurements
on a Sun 3/80 (1.5 Mips). We normalized these measurements by a factor of
1/19.

Boolean local consistency method is presented in [12] who presents results
on a Macintosh SE/30 equivalent to a Sun 3/50 (1.5 Mips). We normalized
them with a factor of 1/19. This solver includes two labeling heuristics, the
most important being the ability to dynamically order the variables w.r.t.
the number of constraints still active on them. On the other hand, clp(B)
only uses a static order (standard labeling).

FAST93 is a boolean solver based on 0-1 programming techniques from Opera-
tional Research [3]. The time measurements are given for a Sparc Station 1+
(18 MIPS), and therefore normalized by a factor 1/1.6. It should be noted
that on the benchmark problems, only the first solution is computed.

5.3 Comparison with other solvers

Table 7 shows the performances of clp(B) and the corresponding speedup w.r.t.
all other solvers above presented except for FAST93 since it was on a different set
of benchmarks (table 8 presents a comparison with FAST93). The sign “ovflw”
means that the program exhausted available memory, the symbol “?” means
that the timing was not available to us and the symbol ↓ before a number means
in fact a slowdown of clp(B) by that factor. We can summarize the figures of
table 7 and table 8 as follows:
2 the other solver of CHIP, based on boolean unification, became quickly unpractica-

ble: none of the benchmarks presented here could even run with it, due to memory
limitations.



clp(B) clp(B/FD) CHIP Bdd best Enum BCons

Program Time (s) clp(B) clp(B) clp(B) clp(B) clp(B)

schur 13 0.040 2.50 20.57 27.75 20.25 1.75
schur 14 0.040 2.50 22.00 35.75 22.00 2.00
schur 30 0.100 2.50 93.70 ovflw ? ?
schur 100 0.620 1.89 322.83 ovflw ? ?

pigeon 6/5 0.020 2.50 15.00 3.00 2.00 6.50
pigeon 6/6 0.180 2.00 10.00 ↓ 1.80 12.72 4.88
pigeon 7/6 0.110 2.81 15.45 1.00 7.63 7.90
pigeon 7/7 1.390 1.91 9.67 ↓ 5.56 ? 5.20
pigeon 8/7 0.790 2.81 16.12 ↓ 2.54 ? 8.63
pigeon 8/8 12.290 1.97 9.58 ↓ 21.18 ? 5.49

queens 6 0.040 1.50 ? 25.25 1.75 ?
queens 7 0.090 1.88 ? 50.55 4.11 ?
queens 8 0.230 2.34 19.17 233.73 6.26 7.86
queens 9 0.860 2.48 19.37 ovflw 8.02 9.01
queens 10 3.000 2.75 22.27 ovflw ? 10.90
queens 14 1st 0.500 1.74 12.56 ovflw ? 6.28
queens 16 1st 1.510 2.17 17.47 ovflw ? 11.89
queens 18 1st 4.450 2.35 20.27 ovflw ? ?
queens 20 1st 17.130 2.51 22.93 ovflw ? ?

ramsey 12 1st 0.130 1.46 10.53 ovflw ? ?
ramsey 13 1st 0.690 2.17 11.13 ovflw ? ?
ramsey 14 1st 1.060 2.28 31.30 ovflw ? ?
ramsey 15 1st 292.220 2.39 32.10 ovflw ? ?
ramsey 16 1st 721.640 2.52 44.17 ovflw ? ?

Table 7. clp(B) vs all other solvers

clp(B/FD) Basically, clp(B) is about twice as fast as clp(B/FD) on average.
This factor varies only slightly between 1.5 and 2.5 (depending on the prob-
lem), showing that the two systems perform the same pruning. clp(B)
achieves better performances because of its more simple data-structures and
internal computations.

CHIP The average speedup of clp(B) w.r.t. CHIP is around a factor of 20,
with peak speedup reaching more than two orders of magnitude. It can be
noted that on the schur and ramsey benchmarks the speedup of clp(B)
grows up as the size of the problem grows. This is certainly due to the fact
that the management of constraints is more complex in CHIP.

Adia The average speedup of clp(B) w.r.t. Adia is around a factor 20. It is
however worth noticing that for big problems like schur (n ≥ 30), queens
(n ≥ 8) or ramsey Adia overflows due to memory limits. This is intrinsic
to the BDD approach and not only to the Adia implementation. However,
Adia is slightly faster on the pigeon example because BDDs make it possi-



ble to factorize the very large number of solutions. Also note that we have
chosen the timmings of Adia corresponding to the best heuristics for each
benchmark (which is not always the same [15]); with the worst heuristics
performances of Adia decrease greatly and for instance it is also slower on
the pigeon problem.

Enumeration method The average speedup is around an order of magnitude.
The speedup however differs substantially on the different bechmarks and
even within the same benchmark with different problem sizes showing that
the two solvers do not perform the same search space reduction.

Boolean local consistency method The average speedup is around a factor
6. An interesting point is that the factors are quite constant within a class of
problem. We conjecture that this is because both solvers certainly perform
much the same pruning, although they are based on very different data-
structures for the constraints and constraint network.

FAST93 clp(B) FAST93

Program Time (s) Time (s) clp(B)

pigeon 7/7 1st 0.250 0.010 25.00
pigeon 8/7 1st 1.940 0.790 2.45
pigeon 8/8 1st 0.630 0.020 31.50
pigeon 9/8 1st 4.230 6.840 ↓ 1.61
pigeon 9/9 1st 0.690 0.030 23.00

ramsey 10 1st 11.500 0.070 164.28
ramsey 12 1st 81.440 0.130 626.46

Table 8. clp(B) vs an Operational Research method

FAST93 We have the timmings for pigeon and ramsey problems only and for
the computation of the first solution only since this method cannot compute
all solutions (see table 8). On the pigeon problem, clp(B) is about 30 times
faster than FAST93 when the problem is satisfiable (less pigeons than holes)
whereas FAST93 discovers inconsistencies more quickly when the problem
does not admit any solution because of the underlying Operational Research
techniques. For instance on pigeon 9/8 FAST93 is 1.6 times faster than
clp(B). This method does not seem adequate to solve the ramsey problem
since it is 160 times slower than clp(B) for ramsey 10 and more than 600
times slower for ramsey 12. The speedup of clp(B) seems to grow exponen-
tially, showing again that the two solving techniques perform very different
search space reduction.



6 Conclusion and perspective

We have presented a boolean constraint solver in the CLP paradigm wich is
both very simple and efficient. It is based on the glass-box approach, and only
uses a single low-level constraint into which boolean constraints such as and, or
or not are decomposed. The main idea was to simplify the data-structures used
for full finite domain constraints in clp(FD) that were used in the clp(B/FD).
These simplifications improve the performances by more than a factor two giv-
ing a solver which is around an order of magnitude faster than other existing
boolean solvers. The low-level primitive constraint at the core of clp(B) can be
implemented into a WAM-based logical engine with a minimal extension : only
four new abstract instructions are needed. Therefore this very simple but very
efficient boolean constraint solver can be incomporated into any Prolog system
very easily. We are currently investigating the use of clp(B) for real-life applica-
tions such as fault diagnosis. We will also investigate the integration of flexible
primitives to allow the user to define complex labeling heuristics.
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